Proof Programming
from LCF_LSM to Goaled via HOL

Professor Tom Melham, FRSE FBCS CEng
University of Oxford

My Introduction to Theorem Proving

UNIVERSITY of CAMBRIDGE
COMPUTER LABORATORY

UNIVERSITY of CAMBRIDGE
COMPUTER LABORATORY

Technical Report No. 41

LCF _ LSM

- Technical Report No. 42

b X
! PROVING A COMPUTER CORRECT

Mike Gordon
by

Mike Gordon

University of Cambridge
Computer Laboratory
Corn Exchange Street

Cambridge CB2 3QG

University of Cambridge
Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG

The LCF_LSM System c. 1983

Verification with LCF LSM

Mostly hand-guided
forward symbolic

simulation by rewriting...

It Was Really Painful...

% FLOODING SINK INTERFACE ASSCCIATIVE MEMDRY CORRECTNESS PROOF 2
2 4
% COMPONENT S DETECY z
% THEQRY : detect_v VERIFICATION 2
Z PARENTS 3 detect_s detect_i 2

o % DESCRIPTICN : Verification of device DETECT. E4
% 4
% AUTHOR 2 T. MELHAM

2 % DATE 2 34.02.05

e % Create the theory detect_v
new_theory “detect_v ;33 % Set up a goal to arave.
let goall = (L1y "1b. T = b == b");;

% Parent theories are detect

Mmaag new_parent [“detect_i“; ° — % This function will groduce the symmetric <=> thm.
- let SYMIFF th = let conj = IFF_CONJ (SPEC_ALL th)
bt % We also need some LIST and in let cl = CONJUNCT1 conj

map new_parent [“list_ax™; “u in let c2 = CONJUNCT2 conj
in CONJ_IFF (CONJ c2 cl1);3

% We need a tactic -for BOOL cases.
let CASES.SPEC_TAC (wl,w) =
% Fetch device specifications (GEN_TAC THEN
STRUCT_CASES_TAC (SPEC (fst (dest_forall w)) BOOL_CASES)) Cwlsw);s

let NAND8 = axiom “primitives
% Take BOOL cases then rewrite then use axiom B30OL_EQ_DISTINCT %
let SPLIT16 = axiom “primitiv let tacl = REPEAT CASES_SPEC_TAC
THEN REWRITE_TAC CEQ;SYMIFF(NEG_EQ)1
let DETECT_IMP = axiom “detec THEN ACCEPT_TAC (CONJUNCT1 BOOL_EQ_DISTINCT) ;3

let DETECT = axiom “detect_s" % Prove goall using tacl giving lemma lemé4.
let lem4 = TAC_PROOF (goall,tacl):;

% Rewrite T = x to x using lemma lemé.
let lem5 = REWRITE_RULE Clem4] lem3;;

Z Expand the implementation b % Use lem5 to rewrite thml.
~ let thml = EXPAND_IMP L3I CNAN let thm2 = REWRITE_RULE C(GEN_ALL lem5)] thmi;;

% Fetch eguality axiom from 1 % Fetch LOW_BYTE axiom.
let LIST8_EQ = axiom “list_ax let LOW_BYTE = axiom “constants® “LOW_BYTE™;;

%X Specialize to equality with % Fetch HIGH_BYTE axiom.
let leml = SPECL [wTwimTwjaTn let HIGH_BYTE = axiom “constants® “HIGH_BYTE";:

% Smecialize the rest of the % Rewrite LOW_BYTE and HIGH_BYTE in DETECT.
let lem2 = SPEC_ALL leml;: let thm3 = REWRITE_RULE CLOW_BYTE3HIGH_BYTE] DETECT:;

% We need a rewrite going the
let lem3 = SYM lem2;;

2

It Was Really Painful...

% FLODDING SINK INTERFACE ASSOCIATIVE MEMORY CORRECTNESS PROOF %
£ £
% COMPONENT s DETECTY z
% THEQRY : detect_v VERIFICATION Ed
Z PARENTS 3 detect_s detect_i 2
~— % DESCRIPTION : Verification of device DETECT. 4
% k4
% AUTHOR 2 T. MELHAM
% DATE 2 834.02.05

% Create the theory detect_v
new_theory “detect_v";; % Set up a goal to prove.

= let goall = (Lly "1b. T = b == b");;
% Parent theories are detect

maa new_parent [“detect_i*; ° — % This function will groduce the symmetric <=> thm.
- let SYMIFF th = let conj = IFF_CONJ (SPEC_ALL th)
bt % We also need some LIST and in let cl = CONJUNCT1 conj

map new_parent [“list_ax™; “u in let c2 = CONJUNCT2 conj
in CONJ_IFF (CONJ c2 c1);3

% Reuwrite 7T = x to x using lemma leméa.
let lem5 = REWRITE_RULE [lem4] lem3;;

% Use lem5 to rewrite thml.
let thm2 = REWRITE_RULE C[(GEN_ALL lem5)] thmls;

2 Fetch LOW_BYTE axiom.
let LOW_BYTE = axiom “constants® “LOW_BYTE ;3

Ny

% Fetch HIGH_BYTE axiom.
let HIGH_BYTE = axiom “constants® “HIGH_BYTE™“3:;

% Rewrite LOW_BYTE and HIGH_BYTE in DETECT.
let thm3 = REWRITE_RULE CLOW_BYTE;HIGH_BYTEJ DETECT:;

The Emergence of HOL, HOL88, HOL90

UNIVERSITY of CAMBRIDGE
COMPUTER LABORATORY

Technical Report no. 68

3

HOL: A Prod Gessrsting Systom e
Higher-Order Loghc

HOL

A MACHINE ORIENTED FORMULATION
OF HIGHER ORDER LOGIC

A theorem proving
environment
for higher order logic

VLSI SpeCifica . = - / '\(‘;,“H/“”
Verification an |
Synthesis

THE UNIVERSITY OF CALGARY

An Implementation of Higher Order Logic

Konrad Slind

Graham Birtwistle
P.A. Subrahmanyam

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
December, 1990

© Konrad Slind 1990

Kluwer Academic Publishers

Derived Definitional Principles

Recursive types, functions (Melham, Gunter, ...)
Recursive Boolean Functions (Andersen, Petersen)

Inductive definitions (Melham, Harrison, ...)

General/mutual recursive functions using well-founded orderings
(Ploegerts, Slind, ...)

UNIVERSITY OF CAMBRIDGE
COMPUTER LABORATORY

Function Definition in Higher-Order Logic

e Konrad Slind"
Inductively alindsintormatik. tu-s

in the HOL Theorem Prover ches.de

Recursive Boolean Functions in HOL

_ Technical Report No. 146

Another Look at Nested Recursion

AUTOMATING RECURSIVE
TYPE DEFINITIONS IN
HIGHER ORDER LOGIC

Abstract

Inductive definitions: automation and
application

John Harrison

by
Thomas F. Melham

Uaiversity of Cambridge Computer Laboratory
Vew Museum Site
Pemboke Street
Cambridge
B2 396

Eagland
A Package for Inductive Relation Definitions in HOL irhOd.cam.acak 1 Introduction nd Application of
Iutually Recursive

Abstract. This paper demonstrates the great practcal tiliy of in. K s’
HOI

September 1988

secursiv types stasting just rom the Axio s
with the existing HOL development where several speciic fee recursive
types are developed firs.

Univensiyof Cambridge
e T 1 Inductive definitions
Inductive defitons are very common In mathematics, especally in th def
tiom offormal anguages ematical ogie sad

Semantics Guill an Ml (6] give ome

England
Telephone Cambridge (0223) 334600

o by Aczel [2]

Inductive defnitions defing
f...then ¢ € ', where the h
‘membership in . These rul
separating the hypotheses (if any) from the conclusion. For example, the set of
even numbers might be defined as a subset of the reals by

33
nek
wrneE

Read lterally, such a defintion merely places some constraiats on the set
E, asserting its ‘closure’ under the rules, and does not, in general, determine
it ‘uniquely. For example, the set of even numbers satisfies the above, but 80
does the set of natural numbers, the set of integers, the set of rational numbers

Hardware Verification in Higher Order Logic

Formal Aspects of VLSI Design
G.J. Milne and P.A. Subrahmanyam (editors)
© Elsevier Science Publishers B.V. (North-Holland), 1986

Why higher-order logic is a good formalism
for specifying and verifying hardware

Mike Gordon

Computer Laboratory
Corn Exchange Street, Cambridge CB2 3QG
L
Higher-order logic was originally developed as a foundation for math-
ematics. We show how it can be used both as a hardware description

language, and as a deductive system for proving that designs meet
their specifications. Examples used to illustrate various specifica-
tion and verification techniques include a CMOS inverter, a CMOS
full adder, an n-bit ripple-carry adder, a sequential multiplier and

an edge-triggered Dtype register.

1. Introduction

The purpose of this paper is to show, via examples, that many kinds of digital
systems can be formally specified using the notation of formal logic and, further-
more, that the inference rules of logic provide a practical means of proving system
designs correct. We claim that there is no need for specialized hardware description
languages or specialized deductive systems; ‘pure logic’ suffices.

The particular logical system used here is called higher-order logic. It is hoped
that Section 2 below will enable readers who are not familiar with predicate cal-
culus to understand what follows. Thorough introductions to higher-order logic
can be found in textbooks on mathematical logic [8], in Church’s original paper
[1}, or in the report on the HOL logic [4].

2. Introduction to higher-order logic

ed Itors Higher-order logic uses standard predicate logic notation:

G. Mllne e “P(z)” means “z has property P”,

e “at” means “not t”,

PA. Subrahmanyam

North-Holland

e “t; Vt,” means “t; or t,”,
“ty At,” means “t; and t,”,

“t, D t,” means “t, implies ¢,”,

Fast Forward to... Intel’s Infamous FDIV Bug

CLOCK DRIVER

4195835.0 / 3145727.0

INSTRUCTION
FETCH

= 1.333 820 449 136 241 002 (Correct)
= 1.333 739 068 902 037 589 (Flawed)

INSTRUCTION
DECODE

: COMPLEX
BUS INTERFACE INSTRUCTION
LOGIC SUPPORT

| SUPERSCALER
INTEGER
EXECUTION
UNITS

inte'

pentium™

REO C 'E'S: SO} R
PIPELINED |
FLOATING §

1 MP LOGIC

Huge potential cost (100s of M$)

Processor Verification at Intel

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2005

An Industrially Effective Environment for
Formal Hardware Verification

Carl-Johan H. Seger, Robert B. Jones, Member, IEEE, John W. O’Leary, Member, IEEE, Tom Melham,
Mark D. Aagaard, Member, IEEE, Clark Barrett, and Don Syme

Abstract—The Forte formal verification environment for
datapath-dominated hardware is described. Forte has proven to be
effective in large-scale industrial trials and combines an efficient
linear-time logic model-checking algorithm, namely the symbolic
trajectory evaluation (STE), with lightweight theorem proving
in higher-order logic. These are tightly integrated in a general-
purpose functional programming language, which both allows the
system to be easily customized and at the same time serves as
a specification language. The design philosophy behind Forte is
presented and the elements of the verification methodology that
make it effective in practice are also described.

Index Terms—BDDs, formal verification, model checking,
symbolic trajectory evaluation, theorem proving.

I. INTRODUCTION

UNCTIONAL validation is one of the major challenges in

chip design today, with conventional approaches to design
validation a serious bottleneck in the design flow. Over the past
ten years, formal verification [1] has emerged as a complement
to simulation and has delivered promising results in trials on
industrial-scale designs [2]-[6].

Formal equivalence checking is widely deployed to compare
the behavior of two models of hardware, each represented as
a finite state machine or simply a Boolean expression (often
using binary decision diagrams (BDDs) [7]). It is typically
used in industry to validate the output of a synthesis tool
against a “golden model” expressed in a register-transfer level
hardware description language (HDL), and in general to check
consistency between other adjacent levels in the design flow.

Property checking with a model checker [8]-[11] also in-
volves representing a design as a finite state machine, but it
has wider capabilities than equivalence checking. Not only can
one check that a design behaves the same as another model,

Manuseript received January 20, 2004: revised June 23, 2004. This paper
was recommended by Associate Editor J. H. Kukula.

C.-J. H. Seger, R. B. Jones, and J. W. O’Leary are with Strategic CAD
Labs, Intel Corporation, Hillsboro, OR 97124 USA (e-mail: Carl.Seger@
intel.com; Robert.B.Jones @intel.com; John.W.0"Leary @intel.com).

T. Melham is with the Oxford University Computing Laboratory, Oxford
0OX13QD, U.K. (e-mail: Tom.Melham @comlab.ox.ac.uk).

M. D. Aagaard is with the Department of Electrical and Computer En-
gineering, University of Waterloo, Wateroo, ON N2L 3G1. Canada (e-mail:
maagaard @uwaterloo.

C. Barrett is with the Department of Computer Science, Courant Institute
of Mathematical Sciences, New York University, New York, NY 10012 USA
(e-mail: barrett@cs.nyu.edu).

D. Syme is with Microsoft Rescarch, Cambridge CB3 OFB, U.K. (e-mail:
dsyme@microsoft.com).

Digital Object Identifier 10.1109/TCAD.2005.850814

one can also check that the hardware possesses certain desir-
able properties expressed more abstractly in a temporal logic.
An example is checking that all requests are eventually ac-
knowledged in a protocol. Model checking is currently much
less widely used in practice than equivalence checking.

Theorem proving [12], [13] allows higher level and more
abstract properties to be checked. It provides a much more
expressive language for stating properties—for example, higher
order logic [14]—and it can deal with infinite-state systems.
In particular, it allows one to reason with unknowns and param-
eters, so a general class of designs can be checked—for exam-
ple, parameterized IP blocks [15]. Industrially, theorem proving
is still viewed as a very advanced technology, and its use is not
widespread.

Equivalence checkers and model checkers both suffer from
severe capacity limits. In practice, only small fragments of
systems can be handled directly with these technologies, and
much current research is aimed at extending capacity. Of
course, it is unrealistic to expect a completely automatic model-
checking solution. Instead, one needs to find good ways of
using human intelligence to extract the maximum potential
from model-checking algorithms and to decompose problems
into appropriate pieces for automated analysis. One approach
is to combine model-checking and BDD-based methods with
theorem proving [16]-[18]. The hope is that theorem proving’s
power and flexibility will enable large problems to be broken
down or transformed into tasks a model checker finds tractable.
Another approach is to extend the top level of a model checker
with ad hoc theorem-proving rules and procedures [19].

This paper describes a formal verification system called Forte
that combines an efficient linear-time logic model checking
algorithm, namely symbolic trajectory evaluation (STE) [20],
with lightweight theorem proving in higher-order logic
are interfaced to and tightly integrated with FL [21], a §
typed, higher order functional programming languagd
general-purpose programming language, FL allows th]
environment to be customized and large proof effort
organized and scripted effectively. FL also serves as an
sive specification language at a level far above the tqf
logic primitives.

The Forte environment has proven to be highly e|
in large-scale industrial trials on datapath-dominated hs
[3], [22], [23]. The restricted temporal logic of ST
not, however, limit Forte to pure datapath circuits. Ma
control circuits are “datapath-as-control,” and these can
handled effectively. In addition, the tight connection to
order logic and theorem proving provides great flexil}

0278-0070/$20.00 © 2005 IEEE

Formal Verification

Praqtical Formal Verific.ation
in Microprocessor Design

Robert B. Jones, John W. O’Leary, and
Carl-Johan H. Seger
Intel

Mark D. Aagaard
University of Waterloo

Thomas F. Melham
University of Glasgow

Practical application of formal methods requires
more than advanced technology and tools;

it requires an appropriate methodology. A
verification methodology for data-path-dominated
hardware combines model checking and theorem
proving in a customizable framework. This
methodology has been effective in large-scale

industrial trials, including verification of an IEEE-

compliant floating-point adder.

I FuNCTIONAL VALIDATION is one of the major
challenges in chip design today, with test genera-
tion, test bench construction, and simulation con-
suming a significant portion of the design effort.
Throughout the 1990s, formal verification emerged
as a promising complement to conventional sim-
ulation-based validation.' Most formal verification
research concerns algorithms and focuses on tool
capacity limits. Yet almost any serious verification
effort faces many practical difficulties besides
capacity. In a large verification project, the effort
required to organize the multitude of tasks, speci-
fications, and verification scripts can limit the qual-
ity and productivity of the work.

0740-7475/01/810.00 © 2001 IEEE

We tackle this problem by coupling our
research on verification algorithms and tools
with research on verification methodology. Our
goal is to address the realities of design prac-
tice—rapid changes and incomplete specifica-
tions—while producing high-quality results and
improving verification productivity. Our
methodology systematically organizes a large
verification effort's many interdependent activ-
ities and provides a guiding structure for the
verification process.

Any formal verification tool researcher is
keenly aware that what is a routine verification
for the technology expert or tool developer
may be very difficult for others to duplicate.
Our methodology addresses this problem by
tailoring a formal, custom-built verification
framework, Forte, to industrial-scale circuits
and industrial design environments. Forte com-
bines an efficient, linear temporal logic model-
checking algorithm, called symbolic trajectory
evaluation (STE),? with lightweight theorem
proving. FL—a custom, general-purpose func-
tional programming language—tightly inte-
grates the model checker and the theorem
prover. This combination of model checking,
theorem proving, and a general-purpose pro-
gramming language makes the verification
environment customizable and lets large veri-
fication efforts be organized effectively.

Our methodology has evolved over several
years of use on fully custom, high-performance

IEEE Design & Test of Computers

Intel’s Forte System

A full programming environment

executable specifications
simulation property logic
symbolic simulation

abstraction

SAT and BDDs

functional scripting
debugging support

large set of libraries
theorem proving in higher

order logic. ..

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2005

An Industrially Effective Environment for
Formal Hardware Verification

Carl-Johan H. Seger, Robert B. Jones, Member, IEEE, John W. O’Leary, Member, IEEE, Tom Melham,
Mark D. Aagaard, Member, IEEE, Clark Barrett, and Don Syme

Abstract—The Forte formal verification environment for
datapath-dominated hardware is described. Forte has proven to be
effective in large-scale industrial trials and combines an efficient
linear-time logic model-checking algorithm, namely the symbolic
trajectory ion (STE), with ligl ight theorem proving
in higher-order logic. These are tightly integrated in a general-
purpose functional programming language, which both allows the
system to be easily customized and at the same time serves as
a ification I; The design phil behind Forte is
presented and the elements of the verification methodology that
make it effective in practice are also described.

Index Terms—BDDs, formal verification, model checking,
symbolic trajectory evaluation, theorem proving.

1. INTRODUCTION

UNCTIONAL validation is one of the major challenges in

chip design today, with conventional approaches to design
validation a serious bottleneck in the design flow. Over the past
ten years, formal verification [1] has emerged as a complement
to simulation and has delivered promising results in trials on
industrial-scale designs [2]-[6].

Formal equivalence checking is widely deployed to compare
the behavior of two models of hardware, each represented as
a finite state machine or simply a Boolean expression (often
using binary decision diagrams (BDDs) [7]). It is typically
used in industry to validate the output of a synthesis tool
against a “golden model” expressed in a register-transfer level
hardware description language (HDL), and in general to check
consistency between other adjacent levels in the design flow.

Property checking with a model checker [8]-[11] also in-
volves representing a design as a finite state machine, but it
has wider capabilities than equivalence checking. Not only can
one check that a design behaves the same as another model,

Manuscript received January 20, 2004; revised June 23, 2004 This paper
was recommended by Associate Editor J. H. Kukula.

C.-J. H. Seger, R. B. Jones, and J. W. O’Leary are with Strategic CAD
Labs, Intel Corporation, Hillsboro, OR 97124 USA (e-mail: Carl.Seger@
intel.com; Robert.B.Jones @intel.com; John.W.0’Leary @intel.com).

T. Melham is with the Oxford University Computing Laboratory, Oxford
OX1 3QD, U K. (e-mail: Tom.Melham @comlab.ox.ac.uk).

M. D. Aagaard is with the Department of Electrical and Computer En-
gineering, University of Waterloo, Wateroo, ON N2L 3G1, Canada (e-mail:
maagaard @uwaterloo.ca).

C. Barrett is with the Department of Computer Science, Courant Institute
of Mathematical Sciences, New York University, New York, NY 10012 USA
(e-mail: barrett@ yu.edu).

D. Syme is with Microsoft Research, Cambridge CB3 OFB, U.K. (e-mail:
dsyme @microsoft.com).

Digital Object Identifier 10.1109/TCAD.2005.850814

one can also check that the hardware possesses certain desir-
able properties expressed more abstractly in a temporal logic.
An example is checking that all requests are eventually ac-
knowledged in a protocol. Model checking is currently much
less widely used in practice than equivalence checking.

Theorem proving [12], [13] allows higher level and more
abstract properties to be checked. It provides a much more
expressive language for stating properties—for example, higher
order logic [14]—and it can deal with infinite-state systems.
In particular, it allows one to reason with unknowns and param-
eters, so a general class of designs can be checked—for exam-
ple, parameterized IP blocks [15]. Industrially, theorem proving
is still viewed as a very advanced technology, and its use is not
widespread.

Equivalence checkers and model checkers both suffer from
severe capacity limits. In practice, only small fragments of
systems can be handled directly with these technologies, and
much current research is aimed at extending capacity. Of
course, it is unrealistic to expect a completely automatic model-
checking solution. Instead, one needs to find good ways of
using human intelligence to extract the maximum potential
from model-checking algorithms and to decompose problems
into appropriate pieces for automated analysis. One approach
is to combine model-checking and BDD-based methods with
theorem proving [16]-[18]. The hope is that theorem proving’s
power and flexibility will enable large problems to be broken
down or transformed into tasks a model checker finds tractable.
Another approach is to extend the top level of a model checker
with ad hoc theorem-proving rules and procedures [19].

This paper describes a formal verification system called Forte
that combines an efficient linear-time logic model checking
algorithm, namely symbolic trajectory evaluation (STE) [20],
with lightweight theorem proving in higher-order logic. These
are interfaced to and tightly integrated with FL [21], a strongly
typed, higher order functional programming language. As a
general-purpose programming language, FL allows the Forte
environment to be customized and large proof efforts to be
organized and scripted effectively. FL also serves as an expres-
sive specification language at a level far above the temporal
logic primitives.

The Forte environment has proven to be highly effective
in large-scale industrial trials on datapath-dominated hardware
[3], [22], [23]. The restricted temporal logic of STE does
not, however, limit Forte to pure datapath circuits. Many large
control circuits are “datapath-as-control,” and these can also be
handled effectively. In addition, the tight connection to higher-
order logic and theorem proving provides great flexibility in

0278-0070/$20.00 © 2005 IEEE

Based around a bespoke FP language

with Edinburgh ML Syntax. "

Relational STE and Theorem Proving

for Formal Verification of Industrial
Circuit Designs

John O’Leary, Roope Kaivola - Intel
Tom Melham - Oxford

FMCAD 2013
Portland, OR

CPU Datapath Verification at Intel

 Thousands of operations
— Integer, FP, SSE, AVX, ...

— Miscellaneous
— Various operating modes, flags, faults

* Live RTL, changing frequently until a few
weeks before tapeout

1.

=
|51
s

Scaling Up

* Tens of designs

 Different optimization points
e Different teams
 Different countries

* Not only CPUs
* Not all have FV experts on staff

Integer Multiplier

PPi =S2* BE,

P=%PP;*

7/16/189

The Multiplier Zoo

S1 S2

BOOLI

Wallace Tree Adder
Network

PROD

10-20 multipliers
Hand designed
Hand optimized
All different

FV Challenges

« Varying specs and verification strategies
Implementation changes from design to design
Multiplier always requires decomposition

 Ten designers but not ten multiplier FV experts

« Same story for integer, MMX, FP, SSE, GPU flavors of
multiplication, addition, division, ...
Some operations require even more intricate decomposition

The Solution

Parameters Per-design specs

Verification runs

Formal Aspects
of VLSI Design

Theorem

Fspecs+runs

Proving and
Deduction =correct

The Solution Done Right

« An executable logic for writing specs and verification scripts:

reFLect (Jim Grundy et al.)

« A symbolic simulator that with relational specifications in logic:
rSTE (Roope Kaivola et al.)

« A tightly integrated theorem-prover for the deduction:

Goaled (John O’Leary et al.)

The reFLect Language

« Core syntax:

nop =k |v|no|Ap.nldo| {(n) | *n.c
W—l ———
pattern matching reflection

* Plus extensions driven by necessity

BDDs built in as a primitive type

Quotient types
Overloading

Named function parameters
Records

Possibly unsafe features: references, 1/O, recursion

Higher Order Logic of reFLect

« HOL, following Church: The Goaled logic:
A-calculus reFLect
+ +
logical constants logical constants
+ +
rules rules

Basic idea in both systems:
n—>p means |n=p
Define V, 3, etc by axioms

Add rules for function equality

Proof by evaluation

The Goaled Theorem Prover

 LCF-style implementation, following HOL and HOL Light

Thm is a protected data type, constructible only through a
small set of trusted function calls (a.k.a. inference rules)

* Features driven by necessity

Theories: of reFLect data types, natural numbers, integers,
rationals, lists, pairs, reFLect ADTs, ...

Proof automation: rewriting, first order solving, linear
arithmetic

Bitstring arithmetic

Support for the reflect language extensions

Limitations of STE

 Trajectory assertion:
ckt |=[[S is v ==>> (BEi s fi(v))]]

e But

You need a special purpose reasoning
system for this special purpose logic

B300

Fncoder

Relational specifications cannot be
BE; expressed directly

N-1
S = 2 BE; % 2¥
=0

Relational STE Intuition

rSTE ckt
["' (ci, 1)"]["(a,1) + (b,1) = (5,2) + 2%X(c,2)"]

From Relational STE to Logic

 Theorem relating STE simulations to pure logic:

Vckt cin cout.
rSTE ckt cin cout =

Ve.[ckt] e =
holds cin e = holds cout c

From ad-hoc specification language to pure higher order logic...

il Why Higher-Order Logic

Formal Aspects R, is a good Formalism for

of VLSI Design [A Specifying and Verifying
- Hardware

editors

G. Milne

PA Subrahmanyam Can a Simulator

North-Holland

Verify a Circuit?

Relational STE in Action

S1

Ve.[ckt]e =
holds [] e = holds [boothc] e

500

Ve.[ckt]e = holds (boothc) e

Fncoder

Ve.[ckt]le = eqnl(s2ie sl)

Ve.[ckt]e =

BE; N-1
(sZi esl = Z BE;(s2ie Sl)XZki>
=0

The Theorem Proving Part

Ve.[ckt]e =
s1 S2 (As2iepp; = BE;j(s2iesl)Xxs2ies2)

Ve.[ckt]e =
(s2ieprod = ZIL-V:_Ol(SZi e ppi)xzkl)

Fncoder

Ve.[ckt]e =
(s2ies1=YN1BE;(s2ies1)x2k)

Wallace Tree Adder
Network

PROD

Ve.[ckt]e =
(s2ieprod = s2ie slxs2ies2)

Common Thread in this Work

Programmed deductive algorithms for a class of theorems

VA

Interactive goal-directed proof with tactics

Heuristic proof methods or algorithmic decision procedures

35

Common Threads in this Work

The Influence of Ideas that Mike Gordon Upheld

LCF methodology
Importance of a formal definition framework
Simple types
Hardware verification
Hardware specification in a ‘standard’ logic
Relational hardware specification
Applied and practical

Rigour, truth, modesty, and generosity

36

