
Professor Tom Melham, FRSE FBCS CEng
University of Oxford

Proof Programming
from LCF_LSM to Goaled via HOL

My Introduction to Theorem Proving

The LCF_LSM System c. 1983

Verification with LCF_LSM

3

Mostly hand-guided
forward symbolic
simulation by rewriting...

Firmware!

It Was Really Painful...
.fr
*t

\!- U-t
qra
fr4\-_ *
'.5

B
t\-z

ursfl*IPTI8i.t
fiUTH EB
CIf,TE

ftEtt sIN,e 5 rilt sl'tE"f;*rA fi f, sclTr yf; r{ra8f,y e *n *rfl:r${tss Ff 0B.F

COI{PTINTNT : DETECTTHfiSfrY ! dstect_* VE*IfI{nTtrS#
P#R f filTS 3 dat*c t_s detoc t_i

t
xt
E
fr
fft
*t
{r't

3 trsrl.fication af devJ.ce UfiTffrf'.
3 f. ilS'l-HA!l'
i #r*rf a.03

fr C,r*E t* the thoory. d*tsct_v
neu-thsor?' d*toct*u' i f
fl Fgrunt thefi,ristr'sr& dstect_c *nd dat*ct_i
mB&. fit* ry_{H.al.-*.g nt t' d *t ec t*i. r ' d gt f,c t**. I i I
E t** also,nesd E$$r LIST and ilSf,$ axir*ms.
map oas;psr$nt f 'lLst-a*' I 'ursrd*ax'l i i

E Fstch d+vl.r* s'pscifl,cati,onE-
let NAt-jBB = axiom'pr-imitis.es' 'NAHD8.;i
lst SPLITIS ,' axiom 'prinitines' .SpLITtrS*

let $ETE{T-IIIiP ,ll &*,'l.a,m 'd*t*ct_*.. . SETtrCT_

tret SETfiCT !s axiom 'dot*ct_$;,' 'UfiTEt,T. i i.

t Fxpand ths lr*p3.*m*ntstion behp*{,{lu{r* Eul,ng ttr* *rimi.tX.uor*let thml '* f;XpfiNB;nlip tl tNlt'IDSI SPIITISS Sf TEf:T;InpI i
X Fstch *ge lity axtom f*ruru li t eriume..
Ls t tr 5,T H-r fi rr Ex,isrn ' 11si.1-rx- ' lir sr8-fr {' I ;
t Spsclaliz's to cqs-atity ulith a lis"t of T.$.3.*t 1*mL rE $pfflL fDT,r;rTrisT$inTr;rTnlilTu;nT"nit$.u: LESTg-flSiI
E ft*ocialiEe ths, r*st of the quantified y$rE^.I*t leml a SPfC_ALL trml l l
t i{e need & rs'urite gcing ths frTilf,* ursy - u:o sy:tfiilstry.Iat lsrn3 € SY!4 lem?Ii
E

t

attt

f l{F'; i

{D+

4

- t $rt rU* a goal to llr"cyr. tlrt gorll :r (f, lr t! b. T .! b. *E bii) i i
-.'-- E Thl* f uactl,oa ri.ll g"ro*rcr thr ryiactric . <E> t hr, tbt SYHtFf th !r lct eocj.* IFF_C0flJ (SpEC-ltL *h)in 1ft e1 * Co|(JUIIGT1 coaJ..in:..1 c2. C8fiJUIf,I2 ccnJin C0ilJ-3ff; (COU.| .eZ clri;
\- t tic nrcd a tactlc -tor BSgl ..trs'. , tlrt €45*S5!PSC-?IC (r1.rr) r

(gfl'l_nAg THCIt\-- - STttET-Cllt5-tAC (SPEI tlst tdrrt,-forall rc)) SSAt-CiSES)) (rlrrlJi
' t Tekr *€8L crsga thoa rerrLt. th*n usr a*lor S E EL-EQ_EISIIE€T Ilct t.c1 r f,E?Elf ClSfS_$f,EC-TtrCrHEt'l nf,xFITE-rlC rt&tSTilXFF(I{SG-E0):!l{8il rCCf Pf;}lC (COltJUilOrl sgs.L_:Q_BIsr'IxgT} t;

t Prove go.ll u.ring tacl givlog loom kn{. t-- l.t hn4 - YAC_?IOOF (goellrtacl)3.1\-
I *mlte ? a x to x using hnnr hn*. tlrt 1on5 = RELRITE-RULE CI.R{, lra3ii
t 'Uso 1ro5 to r*d.itr {hrl. t

\- l.t thn2 . RE**flf_tULE [(gfil_ALt lsri)f thklii
I Frtch LOI_6I!E rxl.on. t* 1t t LOlI-lY;g = .xion .'esn*tentr. . LBI{-tlXf. i t*
I Fctch ttICH-BYfE" lxl,on. tle t 8I6H-3Yf,t E .rl,o,r 'crnftenti' 'tt:6H_SfTE!;i
I R.orit. LOU-BYTE .ad HIGH-BVTE ln DETECT. Ilet thn3 = ?f*IXrr-RUI-.E tLSl{-ByXEtgI6H-BtnE: OfEaEri;

It Was Really Painful...
.fr
*t

\!- U-t
qra
fr4\-_ *
'.5

B
t\-z

ursfl*IPTI8i.t
fiUTH EB
CIf,TE

ftEtt sIN,e 5 rilt sl'tE"f;*rA fi f, sclTr yf; r{ra8f,y e *n *rfl:r${tss Ff 0B.F

COI{PTINTNT : DETECTTHfiSfrY ! dstect_* VE*IfI{nTtrS#
P#R f filTS 3 dat*c t_s detoc t_i

t
xt
E
fr
fft
*t
{r't

3 trsrl.fication af devJ.ce UfiTffrf'.
3 f. ilS'l-HA!l'
i #r*rf a.03

fr C,r*E t* the thoory. d*tsct_v
neu-thsor?' d*toct*u' i f
fl Fgrunt thefi,ristr'sr& dstect_c *nd dat*ct_i
mB&. fit* ry_{H.al.-*.g nt t' d *t ec t*i. r ' d gt f,c t**. I i I
E t** also,nesd E$$r LIST and ilSf,$ axir*ms.
map oas;psr$nt f 'lLst-a*' I 'ursrd*ax'l i i

E Fstch d+vl.r* s'pscifl,cati,onE-
let NAt-jBB = axiom'pr-imitis.es' 'NAHD8.;i
lst SPLITIS ,' axiom 'prinitines' .SpLITtrS*

let $ETE{T-IIIiP ,ll &*,'l.a,m 'd*t*ct_*.. . SETtrCT_

tret SETfiCT !s axiom 'dot*ct_$;,' 'UfiTEt,T. i i.

t Fxpand ths lr*p3.*m*ntstion behp*{,{lu{r* Eul,ng ttr* *rimi.tX.uor*let thml '* f;XpfiNB;nlip tl tNlt'IDSI SPIITISS Sf TEf:T;InpI i
X Fstch *ge lity axtom f*ruru li t eriume..
Ls t tr 5,T H-r fi rr Ex,isrn ' 11si.1-rx- ' lir sr8-fr {' I ;
t Spsclaliz's to cqs-atity ulith a lis"t of T.$.3.*t 1*mL rE $pfflL fDT,r;rTrisT$inTr;rTnlilTu;nT"nit$.u: LESTg-flSiI
E ft*ocialiEe ths, r*st of the quantified y$rE^.I*t leml a SPfC_ALL trml l l
t i{e need & rs'urite gcing ths frTilf,* ursy - u:o sy:tfiilstry.Iat lsrn3 € SY!4 lem?Ii
E

t

attt

f l{F'; i

{D+

5

- t $rt rU* a goal to llr"cyr. tlrt gorll :r (f, lr t! b. T .! b. *E bii) i i
-.'-- E Thl* f uactl,oa ri.ll g"ro*rcr thr ryiactric . <E> t hr, tbt SYHtFf th !r lct eocj.* IFF_C0flJ (SpEC-ltL *h)in 1ft e1 * Co|(JUIIGT1 coaJ..in:..1 c2. C8fiJUIf,I2 ccnJin C0ilJ-3ff; (COU.| .eZ clri;
\- t tic nrcd a tactlc -tor BSgl ..trs'. , tlrt €45*S5!PSC-?IC (r1.rr) r

(gfl'l_nAg THCIt\-- - STttET-Cllt5-tAC (SPEI tlst tdrrt,-forall rc)) SSAt-CiSES)) (rlrrlJi
' t Tekr *€8L crsga thoa rerrLt. th*n usr a*lor S E EL-EQ_EISIIE€T Ilct t.c1 r f,E?Elf ClSfS_$f,EC-TtrCrHEt'l nf,xFITE-rlC rt&tSTilXFF(I{SG-E0):!l{8il rCCf Pf;}lC (COltJUilOrl sgs.L_:Q_BIsr'IxgT} t;

t Prove go.ll u.ring tacl givlog loom kn{. t-- l.t hn4 - YAC_?IOOF (goellrtacl)3.1\-
I *mlte ? a x to x using hnnr hn*. tlrt 1on5 = RELRITE-RULE CI.R{, lra3ii
t 'Uso 1ro5 to r*d.itr {hrl. t

\- l.t thn2 . RE**flf_tULE [(gfil_ALt lsri)f thklii
I Frtch LOI_6I!E rxl.on. t* 1t t LOlI-lY;g = .xion .'esn*tentr. . LBI{-tlXf. i t*
I Fctch ttICH-BYfE" lxl,on. tle t 8I6H-3Yf,t E .rl,o,r 'crnftenti' 'tt:6H_SfTE!;i
I R.orit. LOU-BYTE .ad HIGH-BVTE ln DETECT. Ilet thn3 = ?f*IXrr-RUI-.E tLSl{-ByXEtgI6H-BtnE: OfEaEri;

- t $rt rU* a goal to llr"cyr. tlrt gorll :r (f, lr t! b. T .! b. *E bii) i i
-.'-- E Thl* f uactl,oa ri.ll g"ro*rcr thr ryiactric . <E> t hr, tbt SYHtFf th !r lct eocj.* IFF_C0flJ (SpEC-ltL *h)in 1ft e1 * Co|(JUIIGT1 coaJ..in:..1 c2. C8fiJUIf,I2 ccnJin C0ilJ-3ff; (COU.| .eZ clri;
\- t tic nrcd a tactlc -tor BSgl ..trs'. , tlrt €45*S5!PSC-?IC (r1.rr) r

(gfl'l_nAg THCIt\-- - STttET-Cllt5-tAC (SPEI tlst tdrrt,-forall rc)) SSAt-CiSES)) (rlrrlJi
' t Tekr *€8L crsga thoa rerrLt. th*n usr a*lor S E EL-EQ_EISIIE€T Ilct t.c1 r f,E?Elf ClSfS_$f,EC-TtrCrHEt'l nf,xFITE-rlC rt&tSTilXFF(I{SG-E0):!l{8il rCCf Pf;}lC (COltJUilOrl sgs.L_:Q_BIsr'IxgT} t;

t Prove go.ll u.ring tacl givlog loom kn{. t-- l.t hn4 - YAC_?IOOF (goellrtacl)3.1\-
I *mlte ? a x to x using hnnr hn*. tlrt 1on5 = RELRITE-RULE CI.R{, lra3ii
t 'Uso 1ro5 to r*d.itr {hrl. t

\- l.t thn2 . RE**flf_tULE [(gfil_ALt lsri)f thklii
I Frtch LOI_6I!E rxl.on. t* 1t t LOlI-lY;g = .xion .'esn*tentr. . LBI{-tlXf. i t*
I Fctch ttICH-BYfE" lxl,on. tle t 8I6H-3Yf,t E .rl,o,r 'crnftenti' 'tt:6H_SfTE!;i
I R.orit. LOU-BYTE .ad HIGH-BVTE ln DETECT. Ilet thn3 = ?f*IXrr-RUI-.E tLSl{-ByXEtgI6H-BtnE: OfEaEri;

066I puls Puruox o

0661 6eaquraca6l

vrugglY 'AlrvclYc

gcNglcs ugJ,ndl^loc Jo,LNgIAImIvdgc

gcNglcs Jo us.tsvl^t Jo uguDgo
AHI UOd SfI{gtrAIgUInbgU trHJ, dO TNSIAITTIJTNd TVIJ;IIYd NI

SilCIOfS SIYNCIVUC dO ATTOCYd gHI, OI Cgftr,IWgNS
SISgHf V

puIS PBruox

Ag

rrtoT rapro rarltrH Jouolle+uauraldurl u11

AUYCTVC {O AIISUf,AININ gHf

The Emergence of HOL, HOL88, HOL90

6

J. Camilleri and T. Melham, ‘Reasoning with Inductively Defined
Relations in the HOL Theorem Prover’, Technical Report No. 265,
University of Cambridge Computer Laboratory (August 1992).

Reasoning with
Inductively Defined Relations
in the HOL Theorem Prover

Juanito Camilleri

Department of Computer Studies
University of Malta
University Heights
Msida, Malta G.C.

Tom Melham

University of Cambridge
Computer Laboratory

Pembroke Street, Cambridge
England, CB2 3QG.

Abstract: Inductively defined relations are among the basic mathematical
tools of computer science. Examples include evaluation and computation
relations in structural operational semantics, labelled transition relations in
process algebra semantics, inductively-defined typing judgements, and proof
systems in general. This paper describes a set of HOL theorem-proving tools
for reasoning about such inductively defined relations. We also describe a
suite of worked examples using these tools.

Recursive types, functions (Melham, Gunter, ...)
Recursive Boolean Functions (Andersen, Petersen)
Inductive definitions (Melham, Harrison, ...)
General/mutual recursive functions using well-founded orderings
(Ploegerts, Slind, ...)

7

Derived Definitional Principles

T. F. Melham, ‘A Package for Inductive Relation Definitions in HOL’, in Proceed-
ings of the 1991 International Workshop on the HOL Theorem Proving System
and its Applications, Davis, August 1991, edited by M. Archer, J. J. Joyce, K.
N. Levitt, and P. J. Windley (IEEE Computer Society Press, 1992), pp. 350–357.

A Package for Inductive Relation Definitions in HOL

T. F. Melham

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge, CB2 3QG, England.

Abstract

This paper describes a set of theorem proving tools
based on a new derived principle of definition in HOL,
namely the introduction of relations inductively defined
by a set of rules. Such inductive definitions abound in
computer science. Example application areas include
reasoning about structured operational semantics, type
judgements, transition relations for process algebras,
reduction relations, and compositional proof systems.
The package described in this paper automates the
derivation of certain inductive definitions involved in
these applications and provides the basic tools needed
for reasoning about the relations introduced by them.

1 Introduction

The HOL user community has a strong tradition of
taking a purely definitional approach to using higher
order logic. That is, the syntax of the logic is extended
with new notation not simply by postulating axioms to
give meaning to it, but rather by defining it in terms of
existing expressions of the logic that already have the
required semantics. The advantage of this approach,
as opposed to the axiomatic method, is that each of the
primitive rules of definition in the HOL logic—namely,
constant definition, constant specification, and type
definition—is guaranteed to preserve consistency. The
disadvantage is that these rules admit only definitions
that satisfy certain very restrictive rules of formation.
Definitions expressed in any other form must always
be justified formally by deriving them from equivalent,
but possibly rather complex, primitive definitions.

The ML metalanguage allows users to implement
derived inference rules in the HOL system and thus
provides a facility for automating proofs that justify
derived rules of definition. For example, recursive
definitions are not admitted by the primitive rules
of definition of the HOL logic. But certain recursive

type definitions and function definitions are supported
in the system by derived inference rules written in
ML [1, 2]. The details of the primitive definitions that
underlie these rules are hidden from the user, and their
ML implementations are highly optimized. So these
derived principles of definition may simply be regarded
as primitive by most users of the system.

This paper describes a set of theorem-proving tools
based on a new derived principle of definition in HOL

for defining relations inductively by a set of rules.
Sections 2 and 3 give a general introduction to the
class of inductive definitions handled by the package
and explain the logical basis for these definitions. The
remaining sections describe the ML functions provided
by the package and briefly mention some applications
for which the package can be used.

2 Inductive definitions

The following is a simple but typical example of a
relation defined inductively by a set of rules. (This
example is taken from [3].) Let R ✓ A⇥A be a binary
relation on a set A. The reflexive-transitive closure of
R can be defined to be the least relation R⇤ ✓ A ⇥ A
for which the following deduction rules hold.

R1
R⇤(x, y)

R(x, y)

R2
R⇤(x, x)

R3
R⇤(x, z) R⇤(z, y)

R⇤(x, y)

These rules state precisely the properties required of
the reflexive-transitive closure of the relation R. Rule
R1 states that it must contain at least all the values
in R; rule R2 states that it must be reflexive; and rule

1

Induct ive definitions: a u t o m a t i o n and
appl icat ion

John Harrison

University of Cambridge Computer Laboratory
New Museums Site

Pembroke Street
Cambridge
CB2 3QG
England

jrh@cl.cam.ac.uk

Abst rac t . This paper demonstrates the great practical utility of induc-
tive definitions in HOL. We describe a new package we have implemented
for automating inductive definitions, based on the Knaster-Tarski fix-
point theorem. As an example, we use it to give a simple proof of the
well-founded recursion theorem. We then describe how to generate free
recursive types starting just from the Axiom of Infinity. This contrasts
with the existing HOL development where several specific free recursive
types are developed first.

1 Inductive definitions

Inductive definitions are very common in mathematics, especially in the defini-
tion of formal languages used in mathematical logic and programming language
semantics. Camilleri and Melham [6] give some illustrative example~ Examples
crop up in other parts of mathematics too, e.g: the definition of the Borel hier-
archy of subsets of ~. A detailed discussion, from an advanced point of view, is
given by Aczel [2].

Inductive definitions define a set S by means of a set of rules of the form
'if . . . then t E S', where the hypothesis of the rule may make assertions about
membership in S. These rules are customarily written with a horizontal line
separating the hypotheses (if any) from the conclusion. For example, the set of
even numbers E might be defined as a subset of the reals by:

O E E

n E E
(n + 2) e E

Read literally, such a definition merely places some constraints on the set
E, asserting its 'closure' under the rules, and does not, in general, determine
it uniquely. For example, the set of even numbers satisfies the above, but so
does the set of natural numbers, the set of integers, the set of rational numbers

Function Definition in Higher-Order Logic

Konrad Slind ~
slind~inf ormat ik. tu-muenchen, de

Technische Universit£t Miinchen,
Institut fiir Informatik, 80290 Miinchen, Germany.

A b s t r a c t . We use a formally proven wellfounded recursion theorem as
the basis upon which to build a function definition facility for Higher
Order Logic. This approach offers flexibility in the choice of wellfounded
relations used, the deferral of termination arguments, and automatic
isolation of termination conditions. Building on this platform, we provide
the ability to define recursive functions via pattern matching. The system
is parameterized and has been instantiated to quite different theorem
provers.

1 I n t r o d u c t i o n

One use of higher-order logic theorem provers is to verify pure functional pro-
grams. By far the easiest way to model such programs is with the built-in func-
tions of the logic. In a logic of total functions, such a naive modelling can capture
only a proper subset of all programs, but this subset, although it excludes impor-
tant examples such as interpreters, is still quite interesting. A genuine advantage
is that no extra reasoning infrastructure need be built: the logic already provides
it and hence there is no need for a preparatory, and often arduous, phase of "ver-
ification theory" construction. Therefore, a verification approach that represents
functional programs by functions of higher order logic is at tract ive in spite of its
limitations.

The first step toward making the verification of such programs commonplace
is to suppor t their definition in the logic. Here we confront a shortcoming of
many higher-order logic theorem-proving systems: often only primitive recur-
sive definitions are supported. The functions definable by higher-order primitive
recursion model a large class of programs, but the syntactic restrictions of prim-
itive recursion are bothersome. To avoid this bother, we choose instead to define
functions by appeal to the wellfounded recursion theorem. The freedom this gives
us in writing right-hand sides of function definitions is complemented by extend-
ing the left-hand sides to allow ML-style pat tern matching. Thus we arrive at a
system wherein functions syntactically similar to ML or Haskell programs can
be directly defined and reasoned about in the logic.

Our approach is wholly definitional: we define the basic concepts in the logic,
and from these definitions we prove general theorems that our machinery manip-
ulates via inference. In this manner, we can reduce the principle of definition for

* Research supported by DFG grant Br 887/4-2, Deduktive Programmentwicklung

Another Look at Nested Recursion

Konrad Slind

Cambridge University Computer Laboratory

A b s t r a c t . Functions specified by nested recursions are difficult to de-
fine and reason about. We present several ameliorative techniques that
use deduction in a classical higher-order logic. First, we discuss how an
apparent circular dependency between the proof of nested termination
conditions and the definition of the specified function can be avoided.
Second, we propose a method that allows the specified function to be
defined in the absence of a termination relation. Finally, we show how
our techniques extend to nested program schemes, where a termination
relation cannot be found until schematic parameters have been filled in.
In each of these techniques, suitable induction theorems are automati-
cally derived.

1 Introduction

Recursion equations specifying a function / are said to be nested when an argu-
ment to a recursive call of / contains another invocation of / . For example, the
second clause in the following equations has a nested recursion:

g O E E O

g (Sucx) = g (gx).

Nested recursion has traditionally posed problems for mechanization, espe-
cially in logics of total functions. The s tandard criterion in such a logic for ac-
cepting tha t recursion equations form a 'good' definition is tha t the arguments
to recursive calls must decrease in a wellfounded relation. For our example,
this means tha t for some wellfounded relation R, both Vx. R x (Sue x) and
Vx. R (g x) (Sue x) must be proved. Taking R to be the less-than relation (<) ,
the first of these termination conditions is easy enough, but the second seems
problematic. The trouble is t ha t even stating Vx. g x < Sue x as a meaning-
ful proposition seems to assume tha t g has been defined, but tha t is just the
point of proving the termination conditions! Thus there seems to be a circu-
lar dependency between definition and termination proofs in the case of nested
recursion.

We have found tha t working formally in a mechanized logic has helped to
clarify some of the intricacies surrounding nested recursion. In our general ap-
proach, recursion equations (nested or not) are given meaning by deriving them

J. Harrison and M. Aagaard (Eds.): T P H O L s 2000, LNCS 1869, pp. 498-518, 2000.
(£) Springer-Verlag Berlin Heidelberg 2000

Automatic Derivation and Application of
Induction Schemes for Mutually Recursive

Functions⋆

Richard J. Boulton1⋆⋆ and Konrad Slind2

1 Division of Informatics, University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN, UK

2 University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

Abstract. This paper advocates and explores the use of multi-predicate
induction schemes for proofs about mutually recursive functions. The in-
teractive application of multi-predicate schemes stemming from datatype
definitions is already well-established practice; this paper describes an
automated proof procedure based on multi-predicate schemes. Multi-
predicate schemes may be formally derived from (mutually recursive)
function definitions; such schemes are often helpful in proving properties
of mutually recursive functions where the recursion pattern does not fol-
low that of the underlying datatypes. These ideas have been implemented
using the HOL theorem prover and the Clam proof planner.

1 Introduction

The abstract syntax of programming languages is usually represented formally
as recursive types. For example, a type of boolean expressions might be declared
in the following ML-like style:1

datatype prop = var of string | not of prop
| and of prop × prop | or of prop × prop

Parsing maps text in the concrete syntax of the language into elements of these
recursive types. Early stages of compilers may map the types into other recur-
sive types that represent a simpler internal language from which it is easier to
generate machine instructions. Thus they are recursive functions (or procedures)
operating over the recursive types. Code generators and interpreters will also typ-
ically be recursive functions defined over these types. In declarative languages
the original source programs are often recursive functions or predicates.
⋆ Research supported by the Engineering and Physical Sciences Research Council of

Great Britain under grants GR/L03071 and GR/L14381. The authors thank Alan
Bundy, Ian Green and Christoph Walther for their feedback on this work.

⋆⋆ Address from January 2000: Department of Computing Science, University of Glas-
gow, 17 Lilybank Gardens, Glasgow G12 8QQ, UK.

1 The constructors and and or will be treated as infixes.

J. Lloyd et al. (Eds.): CL 2000, LNAI 1861, pp. 629–643, 2000.
c⃝ Springer-Verlag Berlin Heidelberg 2000

Hardware Verification in Higher Order Logic

8

'nz1 sarldrur 11, sueav nzl C I?,, o

t
url pue 11, sueatu url v rl, .
' n', ,o

rI3,
sueatu uzl A r?, .

,.1 |Otr,, SU€aIU nl-o .
3n2r dyadord seq tr,, su?eur u(r)dn .

:uotlelou ctEol alecrpard pJ"pu"ls sasn crEol rapro-reqEtU

f,rEoI rapro-raqElq ol uor+f,npor1ul '(,

'[r] crEol'IoH eql uo podar aql u! ro '[t]
reded leurBrro s.qf,rnqC ut '[A] c1Eo1 le)rleruaqletu uo s{ooqlxal ur puno} aq u€f,
cr8ol rapJo-raqElq of suorl)nporlur qtnoroqJ 'smolloJ l"q,r puelsrepun ol snlnf,

{"f, al?f,Ipard qlrm r"{nu"} lou ar" oq,$ sJap"ar alq€ua 111,r{ r oleq Z uorlles l€ql
padoq sr 11 'cr8ol repro-raqErq pa11e) sr ereq pesn ualsr(s leor8ol relnf,rlred aq;

'saf,gns ,crEo1 arnd, lsuralsfs a^rlf,npep pazrlercads ro sa8en8uel
uotldtrcsap aJe*rpJrq paz{?r)ads ro; paau ou Br eraql l"r{f tur€1f, e1l 'lf,arrof, su8rsap
uralsfs Eutlord Io suearu lecrlre.rd e aprrrord a1Eo1]o salru ef,uaraJur aqt leql teJotu

-raqynJ rpue crEol l"urro; Jo uorlelou aql Eursn pagrcads {11eurro; aq u€f, stualsfs
I"tplp Jo spul{ fueur 1eq1 'saldruexa era ',troqs o1 sr raded rlqt ;o asodrnd aq.L

uor+cnpoJ+ul 'T

'ralsrEar adfiq peraEErrl-aEpe ue
put rarldlltntu lerluanbas e 'rappe frrec-alddrr l!q-u ue 'rappe gn;
SO;niC e 'ra1:alul SOryC e apnlf,ur sanbruqoal uorle)grral pu€ uorl
-eogtcads snorreA aleJlsnllr ol pesn seldtuexg 'suorl€f,grcads rlaqt
laaul suEtsap 1eq1 Eurirord ro; tualsfs e^rl)npap " s" pue 'aEenEuel
uotldtrcsep ertmpreq

"
s" qloq pesn aq uef, lr ,noq moqs a1ysf,rlerua

-{teu JoJ uorl€punoJ ? se padolarrap fgeul8rro sea,r trEol rapro-raqErg

Cbg UgC eEplrqru?C'1aar1g aEueqoxg uroC
riroleroqel ralnduroS

uoProc e{u l

are^apreq tul&lral prre tul$lrads roJ
rusrlBruroJ pooE B 8I f,lEoI rapro-raqElq

^qlA,'
, ee,r 'r0"'uffiifllfiiTiffr;::ffsd

7trfrf,:;i;,;jqr3 u&sag 6'21 lo ucadsY lotutog

4195835.0 / 3145727.0

= 1.333 820 449 136 241 002 (Correct)
= 1.333 739 068 902 037 589 (Flawed)

Fast Forward to... Intel’s Infamous FDIV Bug

9
Huge potential cost (100s of M$)

Processor Verification at Intel

10

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2005 1381

An Industrially Effective Environment for
Formal Hardware Verification

Carl-Johan H. Seger, Robert B. Jones, Member, IEEE, John W. O’Leary, Member, IEEE, Tom Melham,
Mark D. Aagaard, Member, IEEE, Clark Barrett, and Don Syme

Abstract—The Forte formal verification environment for
datapath-dominated hardware is described. Forte has proven to be
effective in large-scale industrial trials and combines an efficient
linear-time logic model-checking algorithm, namely the symbolic
trajectory evaluation (STE), with lightweight theorem proving
in higher-order logic. These are tightly integrated in a general-
purpose functional programming language, which both allows the
system to be easily customized and at the same time serves as
a specification language. The design philosophy behind Forte is
presented and the elements of the verification methodology that
make it effective in practice are also described.

Index Terms—BDDs, formal verification, model checking,
symbolic trajectory evaluation, theorem proving.

I. INTRODUCTION

FUNCTIONAL validation is one of the major challenges in
chip design today, with conventional approaches to design

validation a serious bottleneck in the design flow. Over the past
ten years, formal verification [1] has emerged as a complement
to simulation and has delivered promising results in trials on
industrial-scale designs [2]–[6].

Formal equivalence checking is widely deployed to compare
the behavior of two models of hardware, each represented as
a finite state machine or simply a Boolean expression (often
using binary decision diagrams (BDDs) [7]). It is typically
used in industry to validate the output of a synthesis tool
against a “golden model” expressed in a register-transfer level
hardware description language (HDL), and in general to check
consistency between other adjacent levels in the design flow.

Property checking with a model checker [8]–[11] also in-
volves representing a design as a finite state machine, but it
has wider capabilities than equivalence checking. Not only can
one check that a design behaves the same as another model,

Manuscript received January 20, 2004; revised June 23, 2004. This paper
was recommended by Associate Editor J. H. Kukula.

C.-J. H. Seger, R. B. Jones, and J. W. O’Leary are with Strategic CAD
Labs, Intel Corporation, Hillsboro, OR 97124 USA (e-mail: Carl.Seger@
intel.com; Robert.B.Jones@intel.com; John.W.O’Leary@intel.com).

T. Melham is with the Oxford University Computing Laboratory, Oxford
OX1 3QD, U.K. (e-mail: Tom.Melham@comlab.ox.ac.uk).

M. D. Aagaard is with the Department of Electrical and Computer En-
gineering, University of Waterloo, Wateroo, ON N2L 3G1, Canada (e-mail:
maagaard@uwaterloo.ca).

C. Barrett is with the Department of Computer Science, Courant Institute
of Mathematical Sciences, New York University, New York, NY 10012 USA
(e-mail: barrett@cs.nyu.edu).

D. Syme is with Microsoft Research, Cambridge CB3 0FB, U.K. (e-mail:
dsyme@microsoft.com).

Digital Object Identifier 10.1109/TCAD.2005.850814

one can also check that the hardware possesses certain desir-
able properties expressed more abstractly in a temporal logic.
An example is checking that all requests are eventually ac-
knowledged in a protocol. Model checking is currently much
less widely used in practice than equivalence checking.

Theorem proving [12], [13] allows higher level and more
abstract properties to be checked. It provides a much more
expressive language for stating properties—for example, higher
order logic [14]—and it can deal with infinite-state systems.
In particular, it allows one to reason with unknowns and param-
eters, so a general class of designs can be checked—for exam-
ple, parameterized IP blocks [15]. Industrially, theorem proving
is still viewed as a very advanced technology, and its use is not
widespread.

Equivalence checkers and model checkers both suffer from
severe capacity limits. In practice, only small fragments of
systems can be handled directly with these technologies, and
much current research is aimed at extending capacity. Of
course, it is unrealistic to expect a completely automatic model-
checking solution. Instead, one needs to find good ways of
using human intelligence to extract the maximum potential
from model-checking algorithms and to decompose problems
into appropriate pieces for automated analysis. One approach
is to combine model-checking and BDD-based methods with
theorem proving [16]–[18]. The hope is that theorem proving’s
power and flexibility will enable large problems to be broken
down or transformed into tasks a model checker finds tractable.
Another approach is to extend the top level of a model checker
with ad hoc theorem-proving rules and procedures [19].

This paper describes a formal verification system called Forte
that combines an efficient linear-time logic model checking
algorithm, namely symbolic trajectory evaluation (STE) [20],
with lightweight theorem proving in higher-order logic. These
are interfaced to and tightly integrated with FL [21], a strongly
typed, higher order functional programming language. As a
general-purpose programming language, FL allows the Forte
environment to be customized and large proof efforts to be
organized and scripted effectively. FL also serves as an expres-
sive specification language at a level far above the temporal
logic primitives.

The Forte environment has proven to be highly effective
in large-scale industrial trials on datapath-dominated hardware
[3], [22], [23]. The restricted temporal logic of STE does
not, however, limit Forte to pure datapath circuits. Many large
control circuits are “datapath-as-control,” and these can also be
handled effectively. In addition, the tight connection to higher-
order logic and theorem proving provides great flexibility in

0278-0070/$20.00 © 2005 IEEE

FUNCTIONAL VALIDATION is one of the major
challenges in chip design today, with test genera-
tion, test bench construction, and simulation con-
suming a significant portion of the design effort.
Throughout the 1990s, formal verification emerged
as a promising complement to conventional sim-
ulation-based validation.1 Most formal verification
research concerns algorithms and focuses on tool
capacity limits. Yet almost any serious verification
effort faces many practical difficulties besides
capacity. In a large verification project, the effort
required to organize the multitude of tasks, speci-
fications, and verification scripts can limit the qual-
ity and productivity of the work.

We tackle this problem by coupling our
research on verification algorithms and tools
with research on verification methodology. Our
goal is to address the realities of design prac-
tice—rapid changes and incomplete specifica-
tions—while producing high-quality results and
improving verification productivity. Our
methodology systematically organizes a large
verification effort’s many interdependent activ-
ities and provides a guiding structure for the
verification process.

Any formal verification tool researcher is
keenly aware that what is a routine verification
for the technology expert or tool developer
may be very difficult for others to duplicate.
Our methodology addresses this problem by
tailoring a formal, custom-built verification
framework, Forte, to industrial-scale circuits
and industrial design environments. Forte com-
bines an efficient, linear temporal logic model-
checking algorithm, called symbolic trajectory
evaluation (STE),2 with lightweight theorem
proving. FL—a custom, general-purpose func-
tional programming language—tightly inte-
grates the model checker and the theorem
prover. This combination of model checking,
theorem proving, and a general-purpose pro-
gramming language makes the verification
environment customizable and lets large veri-
fication efforts be organized effectively.

Our methodology has evolved over several
years of use on fully custom, high-performance

Practical Formal Verification
in Microprocessor Design

Formal Verification

16

Practical application of formal methods requires

more than advanced technology and tools;

it requires an appropriate methodology. A

verification methodology for data-path-dominated

hardware combines model checking and theorem

proving in a customizable framework. This

methodology has been effective in large-scale

industrial trials, including verification of an IEEE-

compliant floating-point adder.

Robert B. Jones, John W. O’Leary, and
Carl-Johan H. Seger
Intel

Mark D. Aagaard
University of Waterloo

Thomas F. Melham
University of Glasgow

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

Intel’s Forte System

11

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2005 1381

An Industrially Effective Environment for
Formal Hardware Verification

Carl-Johan H. Seger, Robert B. Jones, Member, IEEE, John W. O’Leary, Member, IEEE, Tom Melham,
Mark D. Aagaard, Member, IEEE, Clark Barrett, and Don Syme

Abstract—The Forte formal verification environment for
datapath-dominated hardware is described. Forte has proven to be
effective in large-scale industrial trials and combines an efficient
linear-time logic model-checking algorithm, namely the symbolic
trajectory evaluation (STE), with lightweight theorem proving
in higher-order logic. These are tightly integrated in a general-
purpose functional programming language, which both allows the
system to be easily customized and at the same time serves as
a specification language. The design philosophy behind Forte is
presented and the elements of the verification methodology that
make it effective in practice are also described.

Index Terms—BDDs, formal verification, model checking,
symbolic trajectory evaluation, theorem proving.

I. INTRODUCTION

FUNCTIONAL validation is one of the major challenges in
chip design today, with conventional approaches to design

validation a serious bottleneck in the design flow. Over the past
ten years, formal verification [1] has emerged as a complement
to simulation and has delivered promising results in trials on
industrial-scale designs [2]–[6].

Formal equivalence checking is widely deployed to compare
the behavior of two models of hardware, each represented as
a finite state machine or simply a Boolean expression (often
using binary decision diagrams (BDDs) [7]). It is typically
used in industry to validate the output of a synthesis tool
against a “golden model” expressed in a register-transfer level
hardware description language (HDL), and in general to check
consistency between other adjacent levels in the design flow.

Property checking with a model checker [8]–[11] also in-
volves representing a design as a finite state machine, but it
has wider capabilities than equivalence checking. Not only can
one check that a design behaves the same as another model,

Manuscript received January 20, 2004; revised June 23, 2004. This paper
was recommended by Associate Editor J. H. Kukula.

C.-J. H. Seger, R. B. Jones, and J. W. O’Leary are with Strategic CAD
Labs, Intel Corporation, Hillsboro, OR 97124 USA (e-mail: Carl.Seger@
intel.com; Robert.B.Jones@intel.com; John.W.O’Leary@intel.com).

T. Melham is with the Oxford University Computing Laboratory, Oxford
OX1 3QD, U.K. (e-mail: Tom.Melham@comlab.ox.ac.uk).

M. D. Aagaard is with the Department of Electrical and Computer En-
gineering, University of Waterloo, Wateroo, ON N2L 3G1, Canada (e-mail:
maagaard@uwaterloo.ca).

C. Barrett is with the Department of Computer Science, Courant Institute
of Mathematical Sciences, New York University, New York, NY 10012 USA
(e-mail: barrett@cs.nyu.edu).

D. Syme is with Microsoft Research, Cambridge CB3 0FB, U.K. (e-mail:
dsyme@microsoft.com).

Digital Object Identifier 10.1109/TCAD.2005.850814

one can also check that the hardware possesses certain desir-
able properties expressed more abstractly in a temporal logic.
An example is checking that all requests are eventually ac-
knowledged in a protocol. Model checking is currently much
less widely used in practice than equivalence checking.

Theorem proving [12], [13] allows higher level and more
abstract properties to be checked. It provides a much more
expressive language for stating properties—for example, higher
order logic [14]—and it can deal with infinite-state systems.
In particular, it allows one to reason with unknowns and param-
eters, so a general class of designs can be checked—for exam-
ple, parameterized IP blocks [15]. Industrially, theorem proving
is still viewed as a very advanced technology, and its use is not
widespread.

Equivalence checkers and model checkers both suffer from
severe capacity limits. In practice, only small fragments of
systems can be handled directly with these technologies, and
much current research is aimed at extending capacity. Of
course, it is unrealistic to expect a completely automatic model-
checking solution. Instead, one needs to find good ways of
using human intelligence to extract the maximum potential
from model-checking algorithms and to decompose problems
into appropriate pieces for automated analysis. One approach
is to combine model-checking and BDD-based methods with
theorem proving [16]–[18]. The hope is that theorem proving’s
power and flexibility will enable large problems to be broken
down or transformed into tasks a model checker finds tractable.
Another approach is to extend the top level of a model checker
with ad hoc theorem-proving rules and procedures [19].

This paper describes a formal verification system called Forte
that combines an efficient linear-time logic model checking
algorithm, namely symbolic trajectory evaluation (STE) [20],
with lightweight theorem proving in higher-order logic. These
are interfaced to and tightly integrated with FL [21], a strongly
typed, higher order functional programming language. As a
general-purpose programming language, FL allows the Forte
environment to be customized and large proof efforts to be
organized and scripted effectively. FL also serves as an expres-
sive specification language at a level far above the temporal
logic primitives.

The Forte environment has proven to be highly effective
in large-scale industrial trials on datapath-dominated hardware
[3], [22], [23]. The restricted temporal logic of STE does
not, however, limit Forte to pure datapath circuits. Many large
control circuits are “datapath-as-control,” and these can also be
handled effectively. In addition, the tight connection to higher-
order logic and theorem proving provides great flexibility in

0278-0070/$20.00 © 2005 IEEE

A full programming environment

▶ executable specifications
▶ simulation property logic
▶ symbolic simulation
▶ abstraction
▶ SAT and BDDs
▶ functional scripting
▶ debugging support
▶ large set of libraries
▶ theorem proving in higher

order logic. . .

Based around a bespoke FP language
with Edinburgh ML Syntax.

FMCAD 2013

Portland, OR

CPU Datapath Verification at Intel

• Thousands of operations
– Integer, FP, SSE, AVX, …
– Miscellaneous
– Various operating modes, flags, faults

• Live RTL, changing frequently until a few
weeks before tapeout

Scaling Up

• Tens of designs
• Different optimization points
• Different teams
• Different countries
• Not only CPUs
• Not all have FV experts on staff

Integer Multiplier

S1 = S BEi * 2ki

PPi = S2 * BEi

P = S PPi * 2ki

7/16/1815

Partial Products
Generation

Booth
Encoder

Wallace Tree Adder
Network

S1 S2

PROD

BEi

PPi

The Multiplier Zoo

• 10-20 multipliers
• Hand designed
• Hand optimized
• All different

Partial Products
Generation

Booth
Encoder

Wallace Tree Adder
Network

S1 S2

PROD

BEi

PPi

FV Challenges

• Varying specs and verification strategies
Implementation changes from design to design
Multiplier always requires decomposition

• Ten designers but not ten multiplier FV experts

• Same story for integer, MMX, FP, SSE, GPU flavors of
multiplication, addition, division, …

Some operations require even more intricate decomposition

The Solution

Parameters CVE Per-design specs

Verification runs

Theorem
Proving and
Deduction

⊢specs+runs
⇒correct

The Solution Done Right

• An executable logic for writing specs and verification scripts:

reFLect (Jim Grundy et al.)

• A symbolic simulator that with relational specifications in logic:

rSTE (Roope Kaivola et al.)

• A tightly integrated theorem-prover for the deduction:

Goaled (John O’Leary et al.)

The reFLect Language

• Core syntax:
n,o,p ::= k | v | n o | lp. n � o | á n ñ | ^n:s

• Plus extensions driven by necessity

BDDs built in as a primitive type
Quotient types
Overloading
Named function parameters
Records
Possibly unsafe features: references, I/O, recursion

pattern matching reflection

Higher Order Logic of reFLect

• HOL, following Church: • The Goaled logic:

l-calculus
+

logical constants
+

rules

Basic idea in both systems:

n ® p means ├ n = p
Define ", $, etc by axioms

Add rules for function equality

Proof by evaluation

reFLect
+

logical constants
+

rules

The Goaled Theorem Prover

• LCF-style implementation, following HOL and HOL Light

Thm is a protected data type, constructible only through a
small set of trusted function calls (a.k.a. inference rules)

• Features driven by necessity

Theories: of reFLect data types, natural numbers, integers,
rationals, lists, pairs, reFLect ADTs, ...

Proof automation: rewriting, first order solving, linear
arithmetic

Bitstring arithmetic

Support for the reflect language extensions

Limitations of STE

• Trajectory assertion:
ckt |= [[S is v ==>> (BEi is fi(v))]]

• But
You need a special purpose reasoning
system for this special purpose logic

Relational specifications cannot be
expressed directly

Booth

Encoder

S

BEi

! = #
$%&

'()

*+$ ∗ 2.$

Relational STE Intuition

rSTE ckt
["! ($%, 1)"] ["), 1 + +, 1 = -, 2 + 2×($, 2)"]

($%,1)
(),1)
(+,1)

(-,2)
($,2)

Full
Add

ci

a

b
s

c

From Relational STE to Logic

• Theorem relating STE simulations to pure logic:

∀"#$ "%& "'($.
*+,- "#$ "%& "'($ ⇒

∀/. "#$ / ⇒
ℎ'123 "%& / ⇒ ℎ'123 "'($ "

From ad-hoc specification language to pure higher order logic...

Why Higher-Order Logic
is a good Formalism for
Specifying and Verifying
Hardware

Can a Simulator
Verify a Circuit?

Relational STE in Action

• ∀#. %&' # ⇒
ℎ*+,- [] # ⇒ ℎ*+,- [0**'ℎ%] #

• ∀#. %&' # ⇒ ℎ*+,- (0**'ℎ%) #

• ∀#. %&' # ⇒ #341(s2i	e	s1)

• ∀#. %&' # ⇒

-2; # -1 = =
>?@

ABC
DE> -2; # -1 ×2G>

Booth

Encoder

S1

BEi

The Theorem Proving Part

∀". $%& " ⇒
⋀)2+ " ,,- = /0-)2+ ")1 ×)2+ ")2

∀". $%& " ⇒
)2+ " ,345 = ∑-789:;)2+ " ,,- ×2<-

∀". $%& " ⇒
)2+ ")1 = ∑-789:;/0-)2+ ")1 ×2<-

∀". $%& " ⇒
)2+ " ,345 =)2+ ")1×)2+ ")2

Partial Products
Generation

Booth
Encoder

Wallace Tree Adder
Network

S1 S2

PROD

BEi(S1)

PPi

Common Thread in this Work

Programmed deductive algorithms for a class of theorems

vs

Interactive goal-directed proof with tactics

Heuristic proof methods or algorithmic decision procedures

35

Common Threads in this Work

The Influence of Ideas that Mike Gordon Upheld

LCF methodology
Importance of a formal definition framework

Simple types
Hardware verification

Hardware specification in a ‘standard’ logic
Relational hardware specification

Applied and practical

Rigour, truth, modesty, and generosity

36

